

EUCOP 4

Book of Abstracts

Gonçalo Vieira, Pedro Pina, Carla Mora and António Correia (eds.)

Water content assessment in glacier ice and beneath it using Nuclear Magnetic Ressonance (NMR). Hansbreen glacier, Hornsund (SW Spitzbergen)

Valenti Turu i Michels, Marcel Chevalier Earth Sciences Foundation, Andorra

Polythermal glaciers are widely spread on sub-polar regions and middle latitude mountains, their motion is mainly rouled by the englacial water content and subglacial drainage regime. In that sense water content assessments in ice is a major issue. For that ground-penetrating radar (GPR) has become the standard method since now, but scarce are the examples using Surface Nuclear Magnetic Resonance. It must be know that SNMR are the only geophysical procedure that detects from the surface the presence of water in the subsurface. The way forward that technique runs is doing a gradual increase of the magnetic pulse moment in order to investigate the subsurface deeper and deeper (Magnetic Resonance Sounding, MRS). The local Earth magnetic field leads in how should be the excitation frequency pulse moment in resonance with the water molecules (the Larmor frequency). When the electromagnetic pulse is removed the absorbed energy is released and can be detected, in essence a new electromagnetic field is obtained at the same frequency from the water hydrogen protons. A signal is obtained that decays exponentially with time (T*2), both related with the amount of water in ice (maximum signal amplitude) and its freedom degree within the ice (decay time). MRS data show different signals amplitudes according to the excitation loop dimensions. In a very high electrical resistive context (>2 Mega Ohms meter for glacier ice) the surveyed depth is directly related to the loop area. For small loops (30 m square loop) amplitudes around 50 nV are common as well as some decay time (T*2) above 300 ms. Enlarging the loop size (60 m square loop) it is possible to observe a decrease of the signal amplitude (E0 < 20 nV) but also the decay time (100 ms >= T*2 >40 ms). Increasing loop sizes (90 and 120 m square loops), a slight increase in amplitude, close to 30 nV, is observed with very high time decays (T*2 >500 ms) at the glacier bottom. In essence the water content detected using SNMR range between 0,12 % and 0,70 % while available GPR data from the same location range between 4% and 2%. The conclusion is that both geophysical methods don't converge, probably because some water content on ice has too short relaxation times being undetectable with conventional MRS devices, but in other hand it means that the low T*2 time decays data from large MRS loops elucidates that in the temperate-ice layer of a polythermal glacier water flows by seepage through veins and microfractures at a very low rate toward the glacier bottom, and a large amount of free water is close to the cold/temperate transition surface. In the cold-ice layer large T*2 time decays are common because water flows through fissures or karstic like conduits. In summary, combining the MRS and GPR techniques gives to the glaciologists a powerful toolkit to elucidate water flow-paths on glaciers, supercooled meltwater content and subglacial drainage or groundwater in aquifers.

Siewert, Matthias Benjamin, 373
Simas, Felipe, 165, 478
Sinitsyn, Anatoly, 276
Sirbu, Flavius, 164
Sitalo, Viktor, 239
Sjöberg, Ylva, 336, 339
Skinner, James, 246, 251, 252
Skorospekhova, Tatyana, 216
Skorve, J., 311
Skov-Nielsen, Cecilie, 91
Skvortsov, Andrey, 331, 438
Sletten, Ronald, 122

Smith, Fraser, 93 Smith, Julia, 362 Smith, S.L., 37 Smith, Sharon, 327 Smol, John P., 204 Sobota, Ireneusz, 177, 179 Sokołowski, Robert J., 281 Soliman, Aiman, 412

Sone, Toshio, 31, 321 Sonnentag, Oliver, 120, 160 Sourdot, Grégoire, 504 Sousa, António Jorge, 238 Spencer, Robert, 126

Stach, Alfred, 175, 177, 179, 367

Stan, Dominika, 287

Stanilovskaya, Julia, 30, 317, 393, 493, 503

Stan-Kleczek, Iwona, 287 Staub, Benno, 154, 421 Steinkogler, Walter, 461 Stendel, Martin, 269

Stettner, Samuel, 216, 308, 378, 427

Stevens, Christopher, 325

Strachan, Ian, 146

Strauss, Jens, 124, 138, 304, 372 Streletskaya, Irina, 274, 299 Streletskiy, Dmitry, 434, 435, 443 Strzelecki, Matt, 74, 85, 275 Stubbins, Aron, 126

Stumm, Dorothea, 354
Su, Zhenzhong, 186
Subetto, Dmitry, 234, 239
Sudakova, Maria, 331
Sueyoshi, Tetsuo, 300, 318
Sugimoto, Atsuko, 32
Sutton, Felix, 186

Sven, Kotlarski, 460 Swanson, David, 270 Swirad, Zuzanna, 246, 251, 252

Szuman-Kalita, Izabela, 293, 353

Szuminska, Danuta, 217

T

Tait, Danilo, 212
Tanarro Garcia, Luis Miguel, 167
Tangen, Håkon, 261
Tanski, George, 138, 259
Teltewskoi, Annette, 132, 226, 241
Tessadri, Richard, 147
Thaler, Bertha, 212
Thiel, Christine, 70, 91
Thienpont, Joshua, 204, 215

Thierry, Aaron, 488
Thies, Hansjoerg, 147, 212
Thiry, Médard, 298
Thomson, Laura, 286
Tikhonov, Alexei, 305
Tillmann, Alexander, 34
Tolotti, Monica, 147, 212

Tomaskovicova, Sonia, 458 Tomczyk, Aleksandra, 97, 353 Tonidandel, David, 147

Toro, Manuel, 202, 203, 218

Torres, J., 247 Townsend-Small, Amy, 221 Traczyk, Andrzej, 169 Treitz, Paul, 360 Tremblay, Tommy, 283

Trofaier, Anna Maria, 364, 374
Tronicke, Jens, 498
Tsarapov, Michail, 399
Tsarev, Andrey, 331, 438
Tumskoy, Vladimir, 313
Turetsky, Merritt, 108
Turner, Kevin W., 207

Turu i Michels, Valenti, 334 Tyson, Gene, 109

.

Úbeda Palenque, Jose, 317 Ulrich, Mathias, 231, 372 Urban, Frank, 434 Urdea, Petru, 81, 164 Urich, Tim, 148 Urqui, R., 247 Ustinova, Elena, 57 Utkina, Irina, 503

v

Valentin-Serrano, P., 247 van Balen, Ronald, 295 Van Ewijk, Karin, 360 van Gasselt, Stephan, 246, 251, 252 van Huissteden, J., 208