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Water content assessment in glacier ice and beneath it using Nuclear
Magnetic Ressonance (NMR). Hansbreen glacier, Hornsund (SW
Spitzbergen)

Valenti Turu i Michels, Marcel Chevalier Earth Sciences Foundation, Andorra

Polythermal glaciers are widely spread on sub-polar regions and middle latitude mountains, their motion is mainky
rouled by the englacial water content and subglacial drainage regime. In that sense water content assessments in ice is
a major issue. For that ground-penetrating radar (GPR) has become the standard method since now, but scarce are the
examples using Surface Muclear Magnetic Resonance. It must be know that SMMR are the only geophysical procedure
that detects from the surface the presence of water in the subsurface. The way forward that technigue runs is doing a
gradual increase of the magnetic pulse moment in order to investigate the subsurface desper and deeper [Magnetic
Resonance Sounding, MRS). The local Earth magnetic field leads in how should be the excitation frequency pulse
moment in resonance with the water molecules (the Larmor frequency]. When the electromagnetic pulse is removed
the absorbed energy is released and can be detected, in essence a new electromagnetic field is obtained at the same
frequency from the water hydrogen protons. A signal is obtained that decays exponentially with time (T*2), both
related with the amount of water in ice (maximum signal amplitude) and its freedom degree within the ice (decay
time). MRS data show different signals amplitudes according to the excitation loop dimensicns. In a very high electrical
resistive context (>2 Mega Ohms meter for glacier ice) the surveyed depth is directly related to the loop area. For small
loops {30 m sguare loop) amplitudes around 50 nV are common as well as some decay time (T*2] above 300 ms.
Enlarging the loop size (60 m square loop) it is possible to cbserve a decrease of the signal amplitude (EQ < 20 nV) but
also the decay time (100 ms »= T*2 =40 ms). Increasing loop sizes (90 and 120 m sguare loops), a slight increase in
amplitude, closs to 30 nV, is chserved with very high time decays (T*2 =500 ms) at the glacier bottom. In essence the
water content detected using SNMR range between 0,12 % and 0,70 % while available GPR data from the same location
range between 4% and Z%. The conclusion is that both gecphysical methods don't converge, probably because some
water content on ice has too short relazation times being undetectable with cenventicnal MRS devices, but in other
hand it means that the low T"2 time decays data from large MRS loops elucidates that in the temperate-ice layer of a
polythermal glacier water flows by seepage through weins and microfractures at a very low rate toward the glacier
bottom, and a large amount of free water is close to the cold/temperate transition surface. In the cold-ice layer large
T*2 time decays are common because water flows through fissures or karstic like conduits. In summary, combining the
MRS and GPR technigues gives to the glaciclogists a powerful toolkit to elucidate water flow-paths on glaciers,
supercooled meltwater content and subglacial drainage or groundwater in aguifers.
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